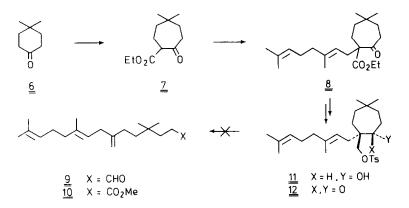

A SYNTHESIS OF MOENOCINOL FROM ISOPRENOID PRECURSORS

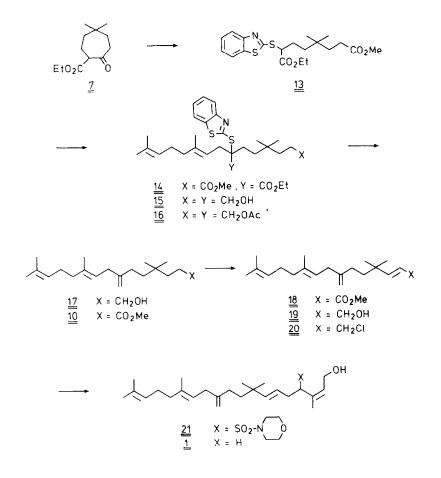
Dirk Böttger and Peter Welzel<sup>\*</sup> Abteilung für Chemie der Ruhr-Universität Postfach 102148, D-4630 Bochum, West Germany


<u>Abstract</u>: The C<sub>25</sub> compound moenocinol (<u>1</u>) is synthesized starting from <u>7</u>, geranyl chloride, and Moiseenkov's C<sub>5</sub> unit .

The antibiotic moenomycin A belongs to the most efficient inhibitors of the bacterial cell wall peptidoglycan biosynthesis  $^{1,2)}$ . Its structure consists of an oligosaccharide part linked to phosphoglycerate which in turn carries at the 2-position the moenocinol unit  $1^{3)}$ . On short acid hydrolysis moenocinol (1) is liberated from the rest of the molecule  $^{1)}$ . 1 is a C<sub>25</sub> compound. Three isoprene units can easily be identified whereas the central C<sub>10</sub> part (C-5 through C-22) does not obey the isoprene rule in an obvious way. It has been speculated that not all of the carbon atoms of this central part of 1 are derived from mevalonate  $^{4)}$ . A number of syntheses of 1 has been published  $^{4,5)}$  but in neither of them any indication has been given of how the carbon skeleton might be formed in the course of the biosynthesis.



Disconnection of <u>1</u> at the C-4-C-5 and at the C-11-C-12 bonds gives two isoprenoid synthons (A and C). We realized that reconnection (in the retrosynthetic sense) of the B unit at C-5 and C-11 also leads to an isoprenoid synthon (of type <u>3</u>). Thujic acid (<u>4</u>) and kharahanaenon (<u>5</u>) have this carbon skeleton which is biogenetically formed by anti-Markovnikov cyclization of geranyl pyrophosphate (see <u>2</u>). This communication describes the first synthesis of moenocinol from purely isoprenoid precursors based on the retrosynthetic considerations described above.


Our starting material was  $\beta$ -keto ester  $\underline{7}$  which is readily obtained (94% yield) from  $\underline{6}^{-6}$  by triethyloxonium tetrafluoroborate-catalyzed reaction with ethyl diazoacetate  $\overline{7}$ . Generation of the anion of  $\underline{7}$  (sodium in boiling toluene  $\underline{8}$ ) followed by addition of geranyl chloride produced a 69% yield of  $\underline{8}_1 \ \underline{11}$  and  $\underline{12}$  were obtained from  $\underline{8}$  by a) LiAlH<sub>4</sub> reduction, b) selective monotosylation, and c) column chromatography and pyridinium chlorochromate oxidation, respectively. It was planned to open the C-5-C-11 bond (moenocinol numbering see  $\underline{1}$  and  $\underline{3}$ ) in  $\underline{11}$  or  $\underline{12}$  by Grob fragmentation which would have lead to the A-B part of  $\underline{1}$  in a straightforward manner. Unfortunately, we were unable to find any experimental conditions to induce the desired fragmentation reactions to give  $\underline{9}$  from  $\underline{11}$  and  $\underline{10}$  from  $\underline{12}$ , respectively. The results obtained in theses studies will be reported elsewhere.



In an alternative approach,  $\underline{7}$  was treated with 2-(morpholinothio-)benzothiazol<sup>9)</sup> in methanol (8h reflux, 14h at 60°C) to give  $\underline{13}$  (77%) by sulfenylating  $\beta$ -keto ester cleavage<sup>10)</sup>. Formation of the more stabilized ester enolate from  $\underline{13}$  (sodium hydride in DMF) and alkylation with geranyl chloride furnished  $\underline{14}$  in 85% yield. In order to introduce the 11(22) double bond the following sequence of reactions was performed : a) LiAlH<sub>4</sub> reduction of  $\underline{14}$  to give  $\underline{15}$  (76%), b) acetylation to furnish  $\underline{16}$  (93%), c) reductive elimination<sup>11</sup> with lithium in liquid ammonia to give  $\underline{17}$ after ester hydrolysis in 76% yield. Conversion of  $\underline{17}$  into 20 was accom-

5202

plished in the following manner : a) oxidation of <u>17</u> with pyridinium chlorochromate followed by Ag(I) oxidation of the resulting aldehyde and ester formation ( diazomethane ) gave <u>10</u> ( 88% overall yield), b) ester enolate formation ( LDA ) and reaction with phenylselenyl bromide <sup>12</sup>) furnished the corresponding  $\alpha$ -phenylselenyl ester from which <u>18</u> was formed in 44% overall yield by phenylselenoxide syn elimination ( 30% H<sub>2</sub>O<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub>/pyridine, 0°C  $\rightarrow$  room temperature ), c) DiBAH reduction of <u>18</u> ( 4h at -78°C in toluene ) led to <u>19</u> ( 44% ), and d) treatment of <u>19</u> with triphenylphosphine/CCl<sub>4</sub> ( 90h at reflux )<sup>13</sup> gave <u>20</u>. When <u>20</u> was reacted in THF-HMPT solution with the dilithium salt of the isoprenoid hydroxy sulfonamide recently introduced by Moiseenkov et al. <sup>14</sup> <u>21</u> was obtained in 16% yield ( based on <u>19</u> ). Finally, reductive desulfonylation was performed as described by Moiseenkov <sup>15</sup> to yield <u>1</u> identical with an authentic sample.



<u>Acknowledgements</u> : This research was generously supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References :

- Review : G.Huber in F.E.Hahn (ed.), Antibiotics, Vol. V/1, Springer, Berlin, 1979
- H.Suzuki, Y.van Heijenoort, T.Tamura, J.Mizoguchi, Y.Hirota and J.van Heijenoort, FEBS Lett. 110, 245 (1980)
- P.Welzel, B.Wietfeld, F.Kunisch, T.Schubert, K.Hobert, H.Duddeck, D.Müller, G.Huber, J.E.deMaggio and D.H.Williams, Tetrahedron <u>39</u>, 1583 (1983)
- 4. P.J.Kocienski, J.Org.Chem. <u>45</u>, 2037 (1980)
- 5. R.Tschesche and J.Reden, Liebigs Ann.Chem. <u>1974</u>, 853; P.A.Grieco, Y.Masaki and D.Boxler, J.Am.Chem.Soc. <u>97</u>, 1597 (1975); R.M.Coates and M.W.Johnson, J.Org.Chen. 45, 2685 (1980)
- 6. D.Böttger, Dissertation, Bochum, 1983
- 7. H.J.Liu and S.P.Majumdar, Synth.Commun. 5, 125 (1975)
- 8. F.Elsinger, Org.Synth. Coll.Vol. V, 76 (1973)
- 9. E.L.Carr, G.E.P.Smith Jr. and G.Alliger, J.Org.Chem. 14, 921 (1949)
- 10. S.Torii, H.Tanaka and H.Okumoto, Bull.Chem.Soc.Jap. 52, 267 (1979)
- 11. R.M.Coates, H.D.Pigott and J.Ollinger, Tetrahedron Lett. 1974, 3955
- 12. Rewiew : H.J.Reich, Acc.Chem.Res. 12, 22 (1979)
- 13. J.G.Calzada and J.Hooz, Org.Synth. 54, 63 (1974)
- 14. A.M.Moiseenkov, E.V.Polunin and A.V.Semenovsky, Tetrahedron Lett. 1979, 4759
- 15. A.M.Moiseenkov, E.V.Polunin and A.V.Semenovsky, Angew.Chem. <u>93</u>, 1122 (1981)

(Received in Germany 4 August 1983)